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Abstract

Research on monocular 3D object detection is being ac-
tively studied, and as a result, performance has been steadily
improving. However, 3D object detection performance is sig-
nificantly reduced when applied to a camera system different
from the system used to capture the training datasets. For
example, a 3D detector trained on datasets from a passen-
ger car mostly fails to regress accurate 3D bounding boxes
for a camera mounted on a bus. In this paper, we conduct
extensive experiments to analyze the factors that cause per-
formance degradation. We find that changing the camera
pose, especially camera orientation, relative to the road
plane caused performance degradation. In addition, we pro-
pose a generalized 3D object detection method that can be
universally applied to various camera systems. We newly de-
sign a compensation module that corrects the estimated 3D
bounding box location and heading direction. The proposed
module can be applied to most of the recent 3D object de-
tection networks. It increases AP3D score (KITTI moderate,
IoU > 70%) about 6-to-10-times above the baselines without
additional training. Both quantitative and qualitative results
show the effectiveness of the proposed method.

1. Introduction
3D object detection is the task of estimating the 3D posi-

tion and orientation of multiple objects in a scene. It plays an
important role in various visual perception applications such
as autonomous driving systems and robot bin picking. To
detect objects in 3D space, conventional methods use various
sensors including single cameras, stereo cameras, LiDAR,
RADAR or a fusion of multiple sensors [4, 13–16, 19]. In
particular, recently, single-camera-based 3D object detection,
or so-called monocular 3D object detection [6, 11, 23] has
attracted increasing interest because a single camera system
is cost-effective, light-weight and easily mountable.

Monocular 3D object detection is a highly challenging
problem because depth information is typically lacking [3].
Recent methods [9], [23], [11] decouple the 3D bounding
box regression problem into several progressive sub-tasks
such as estimating the object 3D center, 3D bounding box

size, and 3D heading direction. These methods disassemble
the elements of the 3D bounding box and impose a regres-
sion loss for each parameter. This helps to train the entire
network effectively and to analyze the contribution of each
component. These works currently achieve state-of-the-art
performance. However, these methods generally do not
apply to camera systems mounted on other vehicles (e.g.
passenger cars, trucks, and buses) even when the same cam-
era model is used. The camera position and orientation are
uniquely set based on the vehicle size and platform. Changes
in camera poses drastically degrade the 3D object detection
performance.

In this paper, we investigate the root causes of perfor-
mance degradation. To do so, we synthetically generate
various images and their corresponding 3D bounding box
labels by changing either rotation or translation or both.
Through extensive experiments, we observe that state-of-the-
art monocular 3D object detectors [10, 11, 17, 23] produce
about 1% AP3D score (KITTI moderate, IoU > 70%) given
images captured from different orientations. Changing the
camera orientation in a roll or pitch axis drastically degrades
the 3D object detection performance, while changing the
camera position and camera orientation in the yaw axis had
little effect. This is because the 3D object detectors have
never been trained to regress the 3D heading direction of
objects in roll and pitch angles. The methods assume that
the camera mounted on the vehicle has a fixed position and
orientation with respect to the road plane. They parameterize
the 3D heading direction of the vehicles as a single value for
yaw-angle, instead of estimating all rotation parameters (roll,
pitch, and yaw).

To tackle this issue, we propose a 3D heading compensa-
tion module, which is a simple yet effective algorithm for
a generalized solution. It corrects the estimated object 3D
head direction from conventional 3D object detectors, so ad-
ditional training datasets and training steps are not required.
We only need the relative camera orientation between the
camera capturing the training data and the camera for the
test data. We use the pre-calibrated camera extrinsic ob-
tained in the manufacturing process. Extensive experiments
with various datasets and ablation studies demonstrate the
effectiveness of our method. Our contributions can be sum-



marized as follows:

• We deeply analyze the individual prediction of the 3D
object detector and figure out the factors that lead the
performance degradation when the model is applied to
other camera systems.

• We propose a generalized 3D object detection method
that is trained on a specific camera setup but can be
utilized in a variety of camera systems.

• The proposed method achieves a 6-to-10 times improve-
ment compared to state-of-the-art methods without ad-
ditional training.

2. Related Works
Monocular 3D Object Detection Monocular 3D object

detection methods estimate the 3D bounding box from a
single RGB image. Estimating 3D information from only 2D
information is a challenging problem. Mono3D [3] utilizes
the prior knowledge of car shape to estimate the 3D bounding
box. DeepMANTA [2] and ROI-10D [12] uses a 3D CAD
model of vehicles and estimates the vehicle 3D bounding box
using a robust 2D/3D vehicle part matching. These methods
require expensive amounts of training data including car
shapes or 3D CAD models and require heavy computational
time. Another research direction incorporates a 2D detection
network with a depth estimation network for monocular
3D object detection [17, 21]. SMOKE [10] predicts 3D
object detection by combining 3D projected keypoints with
regressed 3D regression parameters in an end-to-end manner.
MonoDLE [11] estimates a coarse center, then reduces the
location error between the 2D box center and the projected
3D box center. MonoFLEX [23] separates the truncated
object and the edge of the feature map to minimize the object
depth estimation error.

Robust Monocular 3D Estimation to Camera Pose
Changes Recently, monocular 3D geometry estimation
tasks, such as depth estimation [1, 24] and 3D object de-
tection [8, 9, 25] suffer from generalization issues with cam-
era pose changes. Some works [1, 24] propose generalized
monocular depth estimation methods. The former predict
camera pose and estimate depth in the world coordinates.
The latter points out the problem of unbalanced distribution
of camera extrinsic in training data, and tackles the issue
through geometry-aware data augmentation.

Using monocular 3d object detection, Ego-Net [8] esti-
mates the pose of each object relative to the camera pose
to improve detection performance. Another work [18] in-
puts additional information such as a ground plane database
or camera calibration parameters to detect the particular
object, and is robustly accurate regardless of the plane. Mo-
noEF [25] proposes a robust algorithm even with a change

in camera extrinsic by fusing a visual odometry method and
monocular 3d object detection. In addition to MonoEF [25],
several recent methods try to solve the problem of robustness
in monocular 3D object detection [8, 9]. However, existing
methods require additional training of the model using the
generated images, so the change is limited, unlike a real
environment.

3. Method
3.1. Image synthesis with different camera poses

We generate images as if they are captured from different
positions and orientations by applying the basic knowledge
of multiple view geometry [7] on KITTI datasets [5]. For
image synthesis, we need an image, a per-pixel depth map,
and camera parameters. KITTI provides all of them, but the
3D points are sparse so we need additional dense depth map
computation. We estimate a dense depth map using the state-
of-the-art stereo matching network, HITNET [20]. Given
depth map D ∈ RH×W , and pre-calibrated camera intrinsic
K, we generate a new image Itarget ∈ RH×W in Fig. 2-(b-
f) by back-projecting the reference image Ire f ∈ RH×W in
Fig. 2-(a) into 3D world space, then re-project the 3D points
into a new image plane with the relative camera pose [R|t]
as follows:

Itarget(x) = Ire f (x′), where

x′ = π
(
K[R|t]

[
X
1

])
, X =

(
K−1

[
x
1

])
D(x),

(1)

where x = [x,y]⊺ and X = [X ,Y,Z]⊺ are 2D image coordi-
nates and 3D camera coordinates, respectively. The pro-
jection function π(·) maps 3D points [a,b,c] into 2D pixel
coordinates [a/c,b/c].

Since we use the estimated depth from stereo matching,
the generated target image Itarget contains occlusions and
uncertain depth values. We disregard these areas for image
warping and fill the holes with a pre-trained image inpainting
network [22]. We crop the generated image with 804×244
resolution (KITTI original resolution: 1280×375) with the
same 2D image center to reduce the artifact on the image
boundary caused by image warping. We generate the target
images Itarget with the changes in camera translation t =
[tx, ty, tz]⊺ and camera orientation r = [rpitch, ryaw, rroll ]. We
consider the KITTI right image to be the generated image
translated along the x-axis. We skip generating images with
z-axis translation because it is widely generalized (e.g. the
previous and next frames). We additionally synthesize the
images with a combination of both rotation and translation
changes.

3.2. Our 3D Object Detection Method

We use the conventional monocular 3D object detection
networks, MonoGRNet [17], SMOKE [10], MonoDLE [11],



𝐑!"

Pre-calibrated camera poseCar A

Car B

3D heading compensation module Final outputInitial estimationInput image

3D object 
detection Network

Training 
images & labels

Given

𝜃∗
3D object 

detection Network

𝜃"#"$ → 𝜃∗

Training

Inference

𝑥
𝑦

𝑧

Figure 1. Overview of the proposed 3D object detection pipeline. We utilize a pretrained 3D object detection network (e.g. MonoGRNet [17],
SMOKE [10], MonoDLE [11], and MonoFlex [23]). The proposed 3D heading compensation module rotate the heading direction of initial
estimation in yaw-axis. We use precalibrated camera pose [R|t] between a source camera (training set) and a target camera (test set).
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Figure 2. Qualitative results of MonoDLE (Top) and Ours (Bottom). Projected 3D bounding box (green - prediction) and projected 3D
object center (red - GT, blue - prediction) are visualized.

MonoFLEX [23] trained with the cropped original KITTI
datasets. These methods predict the projected 3D object cen-
ter [x2d ,y2d ]

⊺, depth z3d , yaw angle ryaw, and 3D Bounding
Box (BB) size S = [h,w, l], then the object 3D bounding box
is computed by Eq. (2) and Eq. (4). First, the 3D object
center Xc = [Xc,Yc,Zc] is computed as follows:

Xc =

Xc
Yc
Zc

= z3d

(
K−1

x2d
y2d
1

)
. (2)

Then, the final output of the object’s 8 corners is the eight
corner 3D bounding box Bprev computed as follows:

Bprev = Ry(ryaw)

±h/2
±w/2
±l/2

+

Xc
Yc
Zc

 , (3)

where h,w, and l are the height, width and length of the 3D
bounding box. They represent the 3D heading direction with
the yaw axis instead of all orientations (roll, pitch, yaw-axis),
which means the camera-to-road relative camera pose is
fixed. This is a reasonable assumption because the position
and angle of the camera system mounted on a vehicle is
fixed in the manufacturing process. However, this mild
assumption causes a drastic performance drop when the
model is applied to other camera systems. To improve the
generalization performance of the models for various camera
systems, we design the 3D heading compensation module
as shown in Fig. 1. Given the relative camera pose rr→t =
[r̂roll , r̂pitch, r̂yaw] between a reference camera (training set)
and a target camera (test set), we build the final bounding



box Bours as follows:

Bours = R3d

±h/2
±w/2
±l/2

+

Xc
Yc
Zc

 , where

R3d = Rz(r̂roll)Ry(ryaw)Rx(r̂pitch),

(4)

where Rx(r) is the rotation matrix rotating r-degree in the
x-axis. We use pre-calibrated roll (r̂roll) and pitch (r̂pitch)
angles while the predicted yaw angle (ryaw) is utilized from
a network, either MonoGRNet, SMOKE, MonoDLE or
MonoFLEX.

4. Experiments
4.1. Comparison to state-of-the-art methods

We compare our method to state-of-the-art methods,
MonoGRNet [17], SMOKE [10], MonoDLE [11], and
MonoFLEX [23]. All the networks are trained using the
cropped original KITTI left images Ire f as shown in Fig. 2-
(a). The object 3D bounding boxes in Fig. 2 are predicted
by passing the various rotated images and translated images
Itarget generated by following Sec. 3.1 through the trained
networks. We investigate the performance drop of the base-
line networks given the images captured at different orien-
tations and positions. The qualitative results are shown in
Fig. 2-(b-f) and the quantitative results are reported in Fig. 3
and Table 1. We report both AP3D (IoU = 0.7) and APBEV in
Table 1. We observe that the APBEV of conventional methods
dropped slightly because it measures the average precision
in a 2D Bird-Eye-View projected space. All results analysis
is conducted based on AP3D. Overall, the translation changes
rarely degrade performance in all of the state-of-the-art meth-
ods. However, rotation changes, especially in roll and pitch
axes, sharply lower the average precision of all competing
methods, while the proposed method retains its performance.

4.1.1 Quantitative/qualitative results from synthetic
datasets

We synthesize the images by changing the roll (rroll), pitch
(rpitch), yaw (ryaw), and pitch with y-axis translation from
0◦ to 5◦ by increasing every 1◦ for rotation changes. We
evaluate the performance changes as the degree of rotation
increases. As shown in Fig. 3, the average precision AP3D
of all the methods, MonoGRNet, SMOKE, MonoDLE, and
MonoFLEX decreases sharply as the degree of rotation in-
creases on the roll and pitch axes. After 3◦ rotation, the
conventional methods show around 10% of the original re-
sults and reach about 1% with 5◦ rotation. Meanwhile, the
proposed module avoids the performance degradation exhib-
ited by all the competitive methods. It achieves about 80%
of the original results with 3◦ rotation and about 60% with
5◦ rotation. We also observe that the performance from pitch

rotated images and that from both pitch rotated and y-axis
translated images are similar. This means the translation
in the y-axis rarely results in performance drop. We report
the AP3D performances of all the competitive methods with
ours in Table 1. Some part of results are included in Fig. 3.
We additionally describe the results of yaw rotation (ryaw)
and x-axis translation. The results from yaw rotation show
that the conventional methods produce around 65% of the
original results. The performance drop ratio is relatively
lower than the results from roll or pitch rotation (rpitch,rroll)
as shown in Fig. 3. This is because the monocular 3D ob-
ject detection model learns the vehicle directly in the yaw
axis while the heading directions in the roll and pitch axes
have not been trained. The compensation for object heading
direction in the yaw axis does not significantly increase per-
formance. The proposed module increases performance by
about 10% of the conventional methods. We also visualize
the 3D bounding boxes in 3D space in Fig. 6. The results
show that our 3D object detection method outperforms the
conventional methods not only in 2D projected space but
also in real 3D space. For the translation changes in x-axis
or y-axis, the performance is almost retained, as shown in
Table 1.

Lastly, we compare our method to MonoEF [25], which
mitigates the extrinsic parameter perturbations of the 3D de-
tection task. The method predicts the camera extrinsic with
respect to the road plane, then the feature maps of the input
image are transferred using the estimated camera extrinsic.
Since the code for MonoEF is not released, we implement
the algorithm without the extrinsic estimation part. For a fair
comparison, we use the GT camera extrinsic and transfer the
image features using GT extrinsic parameters. As shown in
Fig. 5, the proposed method outperforms the conventional
compensation method. This means the compensation of the
3D bounding box regression is more effective in an output
space rather than the feature space.

4.1.2 Qualitative results from Real-world datasets

To show the effectiveness of the proposed method, we con-
duct qualitative experiments with real-world datasets. The
training datasets are captured using a normal passenger car
and the test datasets are captured using a truck. We use the
same camera, which means the camera intrinsic is the same.
The height of the camera of the two vehicles from the road
is different. To set a similar field of road view, the camera
in the truck is tilted on the pitch axis. The camera setting is
equivalent to the TransY+Pitch in Fig. 3 and Table 1. We
train the baseline model, MonoDLE, with our real-world
datasets in a supervised manner. We compare the results
from the MonoDLE and ours in Fig. 4. Our method does
not require an additional training process. We use the Mon-
oDLE model and the proposed compensation module. The



Dataset Method AP3D(IoU = 0.7) APBEV
E M H E M H

Original MonoGRNet 12.2 8.12 6.94 21.8 17.2 13.7

Roll MonoGRNet 0.74(6%) 0.54(6%) 0.37(5%) 17.2(79%) 13.7(79%) 11.9(87%)

+Ours 10.1(82%) 6.45(79%) 4.84(70%) 18.3(84%) 16.1(94%) 13.5(99%)

Pitch MonoGRNet 1.29(11%) 0.81(10%) 0.57(8%) 22.9(104%) 18.0(104%) 14.1(103%)

+Ours 8.15(67%) 5.89(73%) 5.12(74%) 24.1(110%) 19.7(114%) 15.9(116%)

Yaw MonoGRNet 8.39(69%) 5.31(65%) 4.31(62%) 21.7(99%) 16.8(97%) 13.2(96%)

+Ours 9.54(78%) 6.37(78%) 5.5(79%) 22.2(102%) 16.9(98%) 13.1(97%)

TransX MonoGRNet 10.7(88%) 7.89(97%) 6.17(89%) 19.0(87%) 15.5(90%) 13.1(96%)

+Ours 10.7(88%) 7.89(97%) 6.17(89%) 19.0(87%) 15.5(90%) 13.1(96%)

TransY MonoGRNet 11.1(91%) 7.71(95%) 6.37(92%) 18.1(83%) 14.2(83%) 12.8(93%)

+Ours 11.1(91%) 7.71(95%) 6.37(92%) 18.1(83%) 14.2(83%) 12.8(93%)

TransY
+ Pitch

MonoGRNet 1.09(9%) 0.76(9%) 0.53(8%) 17.0(78%) 14.7(85%) 13.1(96%)

+Ours 8.12(67%) 6.14(79%) 5.45(78%) 17.8(81%) 16.0(93%) 14.7(107%)

Original SMOKE 16.58 9.56 9.12 18.5 14.3 13.9

Roll SMOKE 0.88(5%) 0.61(6%) 0.50(5%) 17.3(93%) 13.9(97%) 12.6(91%)

+Ours 13.54(81%) 7.40(77%) 6.11(67%) 18.3(99%) 17.1(119%) 15.6(108%)

Pitch SMOKE 1.54(9%) 1.01(10%) 0.76(8%) 19.2(104%) 15.4(108%) 14.0(100%)

+Ours 9.89(60%) 6.56(69%) 6.42(70%) 20.9(113%) 16.8(118%) 15.8(114%)

Yaw SMOKE 11.7(70%) 6.34(66%) 5.26(58%) 17.2(93%) 14.1(98%) 13.4(96%)

+Ours 13.8(83%) 7.54(79%) 6.94(76%) 17.8(96%) 14.1(98%) 13.6(98%)

TransX SMOKE 14.1(85%) 9.56(89%) 9.12(87%) 18.5(98%) 14.3(102%) 13.9(94%)

+Ours 14.1(85%) 9.56(89%) 9.12(87%) 18.5(98%) 14.3(102%) 13.9(94%)

TransY SMOKE 14.8(89%) 9.11(95%) 8.56(87%) 19.0(102%) 15.4(108%) 12.8(92%)

+Ours 14.8(89%) 9.11(95%) 8.56(87%) 19.0(102%) 15.4(108%) 12.8(92%)

TransY
+ Pitch

SMOKE 1.33(8%) 0.89(9%) 0.61(7%) 17.0(92%) 13.9(97%) 12.0(86%)

+Ours 10.4(63%) 6.44(67%) 5.64(62%) 18.1(98%) 15.0(105%) 13.7(99%)

Original MonoDLE 13.6 11.3 9.69 19.7 16.1 14.7

Roll MonoDLE 1.29(9%) 0.99(9%) 0.92(9%) 17.3(88%) $14.5(90%) 12.7(86%)

+Ours 11.8(87%) 9.10(80%) 7.98(82%) 18.3(93%) 16.7(103%) 15.0(103%)

Pitch MonoDLE 1.96(14%) 1.76(16%) 1.45(15%) 20.0(102%) 14(88%) 12.8(87%)

+Ours 9.91(73%) 9.12(81%) 7.82(81%) 21.9(111%) 16.5(102%) 16.0(109%)

Yaw MonoDLE 9.42(69%) 6.91(60%) 5.72(59%) 20.2(102%) 17.8(110%) 16.9(115%)

+Ours 10.7(79%) 9.44(83%) 7.87(81%) 21.6(110%) 18.9(117%) 17.4(119%)

TransX MonoDLE 13.6(96%) 10.1(89%) 8.89(92%) 19.4(98%) 15.6(97%) 14.5(99%)

+Ours 13.6(96%) 10.1(89%) 8.89(92%) 19.4(98%) 15.6(97%) 14.5(99%)

TransY MonoDLE 13.8(101%) 10.8(96%) 8.56(88%) 19.2(97%) 15.4(95%) 14.4(98%)

+Ours 13.8(101%) 10.8(96%) 8.56(88%) 19.2(97%) 15.4(95%) 14.4(98%)

TransY
+ Pitch

MonoDLE 1.81(13%) 1.44(13%) 1.29(13%) 17.5(89%) 15.0(93%) 12.8(88%)

+Ours 9.89(73%) 9.13(80%) 7.21(61%) 18.5(94%) 16.4(102%) 14.9(101%)

Original MonoFLEX 14.2 9.94 7.09 19.67 16.11 14.67

Roll MonoFLEX 1.13(8%) 0.87(9%) 7.09(10%) 16.8(83%) 14.1(88%) 12.0(83%)

+Ours 11.0(77%) 7.12(71%) 5.45(77%) 18.7(93%) 16.9(106%) 14.3(97%)

Pitch MonoFLEX 2.12(15%) 1.34(13%) 0.99(14%) 21.0(104%) 13.9(87%) 12.9(90%)

+Ours 9.89(60%) 6.56(69%) 6.42(70%) 20.9(113%) 16.8(118%) 15.8(114%)

Yaw MonoFLEX 9.8(69%) 6.44(65%) 4.2360% 20.2(103%) 15.8(98%) 13.8(94%)

+Ours 12.1(85%) 8.12(82%) 5.41(76%) 20.8(106%) 16.7(104%) 14.8(101%)

TransX MonoFLEX 14.1(99%) 9.51(96%) 7.49(106%) 19.3(98%) 15.7(97%) 14.4(98%)

+Ours 14.1(99%) 9.51(96%) 7.49(106%) 19.3(98%) 15.7(97%) 14.4(98%)

TransY MonoFLEX 14.8(104%) 9.11(92%) 7.56(107%) 19.5(99%) 15.5(99%) 14.2(97%)

+Ours 14.8(104%) 9.11(92%) 7.56(107%) 19.5(99%) 15.9(99%) 14.2(97%)

TransY
+ Pitch

MonoFLEX 1.94(14%) 1.27(12%) 1.09(15%) 18.8(93%) 12.1(76%) 11.1(76%)

+Ours 9.57(67%) 8.54(86%) 5.89(83%) 19.7(98%) 13.8(86%) 12.7(88%)

Table 1. Part of quantitative 3D detection results. An example is improvement when degree is 3. Subscript parentheses indicate the
percentage of performance compared to the original dataset performance. E, M, H means easy, moderate and hard, respectively.

results show that with the existing method the estimated 3D
bounding box is misaligned with the ground plane. On the

other hand, our method estimates the 3D bounding box to fit
the ground plane and the orientation of the object.



(a) MonoGRNet (b) SMOKE (c) MonoDLE (d) MonoFLEX

Figure 3. 3D object detection results. The x-axis is the rotation angle and the y-axis is the performance drop ratio (%) compared to the AP3D
(KITTI moderate, IoU=0.7) result of the original image.

MonoDLE Ours MonoDLE Ours

Figure 4. Qualitative results of the baseline model (MonoDLE [11]) and our method on real-world datasets. Training datasets are captured
with a passenger car and test datasets are captured with a truck. We visualize the regressed 3D bounding box from MonoDLE and ours.

Figure 5. Results comparison of MonoEF [25] and ours using
AP40 (IoU = 0.7).

4.2. Analysis of 2D object detection

2D object detection is a sub-part of conventional 3D ob-
ject detection networks. 2D detection is utilized as a guide-
line to regress projected 3D points. We investigate the 2D
detection performance of the networks with respect to the
translation and rotation changes. As shown in Fig. 7, we
observe that both translation and rotation changes rarely
affect the performance of 2D object detection. Even with

(a) Images with pitch rotation (b) 3D bounding boxes in 3D

Figure 6. Visualization of 3D bounding box in 3D space. We visu-
alize the 3D bounding boxes estimated from ours and the baseline
model. Boxes marked in red, green and blue are the ground truth,
baseline method, and our method, respectively.
the 5◦ rotated images, the 2D detection performance of the
networks does not decrease significantly and is maintained
at more than 80% of the original performance.

4.3. Analysis of individual factors in 3D object de-
tection

We deeply analyze the individual prediction of 3D object
detection networks. We perform extensive experiments to
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Figure 7. Quantitative results on 2D object detection. Performance
change (%) means the percentage of the moderate 2D performance
compared to original moderate 2D performance of each model
(MonoGRNet [17], SMOKE [10], MonoDLE [11], MonoFLEX
[23]).

figure out which of the various factors in the3D bounding
box regression is significantly affected by small prediction
errors or changes in camera rotation in Table 2. We use Mon-
oDLE [11] as our baseline model for the ablation studies.
As described in Sec. 3.2, MonoDLE independently predicts
each of the components, projected 3D points [x2d ,y2d ], depth
z3d , yaw angle ryaw, Bounding Box (BB) size S = [h,w, l],
then the object 3D bounding box is computed using Eq. (4).
We measure the performance with 3◦ pitch, yaw, roll rotated
images, and original images. We use the prediction values
from MonoDLE, but replace the factor with GT values in
Table 2-(a-e). We use all GT values, but replace the factor
with prediction values in Table 2-(f-j). The results from the
baseline model in the top row of Table 2 demonstrate that the
precision from pitch and roll rotated images is significantly
degraded while the yaw rotation only slightly reduced per-
formance. This means that camera rotations in the pitch and
roll axis (not the yaw axis) are dominant factors affecting
the drop in 3D object detection performance, just as was
observed with Table 4.1.

4.3.1 Bounding box size S = [h,w, l]

As reported in Table 2-(a), the performance of the baseline
model, where the predicted BB size S = [h,w, l] is replaced
by the GT value, marginally improved from 11.3% to 13.3%.
This means that the baseline network regresses very accu-
rately on the 3D BB size, and small errors in the 3D BB
prediction only slightly affect precision. Moreover, we ob-
serve that the 3D object detection performance from the
images rotated in pitch, yaw, and roll axis is also marginally
improved (e.g. pitch3: 1.76% to 2.12%). Even though the
GT BB size is utilized, the results with this level of precision
are not available to be utilized. We can conclude that BB size
is not a dominant factor in thedegraded performance at dif-
ferent camera settings. The results in Table 2-(f), which use
all GT values except the predicted BB size, show about 76%-

replace factors with gt values original pitch3 yaw3 roll3
Baseline (MonoDLE) 11.3 1.76 8.61 0.99

(a) with BB size 13.3 2.12 9.76 1.38
(b) with projected3D 12.0 2.01 9.42 1.27
(c) with yaw angle 11.8 1.78 10.5 1.31
(d) with 3D location 77.6 75.4 74.8 72.1
(e) with depth 67.0 36.7 58.1 12.1
(f) without BB size 78.2 76.1 77.4 78.9
(g) without projected3D 76.4 56.8 74.4 18.9
(h) without yaw angle 69.8 68.4 69.4 67.1
(i) without 3D location 13.5 11.8 12.7 12.1
(j) without depth 14.2 12.5 13.7 12.9

Table 2. Performance analysis to investigate the dominant factors
affecting the 3D detection performance. We use AP40 (IoU = 0.7)
under moderate setting on the KITTI validation set for 3D detection
performance evaluation. (a)-(e) We replace the predictions to GT
values. (f)-(j) We use all GT values and replace GT values to
predictions.

79% AP40 even with rotated images. This is much higher
precision than the results from the baseline. This demon-
strates that the 3D object detector accurately regresses BB
size despite the rotated image being input.

4.3.2 Projected 3D object center [x2d ,y2d ]

Similar to Sec. 4.3.1, we conduct a performance analysis
with/without GT projected 3D points [x2d ,y2d ] in Table 2-(b,
g), respectively. The results show aspects similar to those
observed in the BB size analysis. As reported in Table 2-(b),
the performance of the baseline model with GT projected
3D points marginally improved, from 11.3% to 12.0%. This
means that the projected 3D points are accurately predicted.
Moreover, we observe that the 3D object detection perfor-
mance from the images rotated in pitch, yaw, and roll axis
is also marginally improved (e.g. pitch3: 1.76% to 2.01%)
although the GT projected 3D points are utilized. We can
conclude that projected 3D points are not a dominant factor
in performance degradation with different camera settings.

4.3.3 Heading direction, yaw angle ryaw

Table 2-(c, h) shows the performance with/without GT head-
ing direction, yaw angle ryaw. These results also show as-
pects similar to those observed in the analysis of BB size and
3D projected center, as described in Sec. 4.3.1 and Sec. 4.3.2.
The results in Table 2-(c), applied GT yaw angle are almost
similar to the results from baseline. This means the pre-
dicted yaw angle is quite accurate to regress 3D bounding
boxes. The precision from yaw rotated image is much higher
than that from roll or pitch rotated images (10.5% vs 1.78%,
1.31%). This means the conventional methods only consider
an objects’ yaw angle estimation. The conventional method
requires estimating all heading directions of vehicles, roll,
pitch, and yaw for better regression.



4.3.4 3D object center [Xc,Yc,Zc] & depth z3d

Table 2-(d, e) shows the performance of the baseline model
where the predicted 3D location [Xc,Yc,Zc] or depth z3d is
replaced by the GT values. Surprisingly, all the results in
Table 2-(d) including the original, pitch3, yaw3, and roll3
achieve an average precision of over 70%. This means the
predictions of BB size and yaw angles are quite accurate
while the 3D location prediction is relatively less accurate.
With better estimates of 3D location, the performance of the
3D object detector will be drastically improved. Even with
the rotated images, the performance is retained. Although
the 3D heading directions of the roll and pitch rotated cam-
eras have some errors, the accuracy of the 3D positions
mitigate the AP3D performance degradation. In the conven-
tional methods, the 3D object center is computed using the
back-projection of the 2D projected center with the depth
z3d by following Eq. (2). We additionally analyze perfor-
mance changes with GT depth value in Table 2-(e). The
overall precision is lower than the results in Table 2-(d), but
all results from original and rotated images achieves better
performance than the baseline model. Therefore, the depth
and 3D location are the dominant causes of the performance
drop.

5. Conclusion

In this paper, we deeply analyze the factors that lead to
performance degradation when pretrained 3D objection mod-
els are applied to other camera systems. We found that the
camera pose changes, especially the roll and pitch rotation
changes, critically affect the performance of the 3D object
detection. Based on these observations, we propose a gen-
eralized 3D object detection method. Although the method
is trained on just one specific camera setup, it is applicable
to various camera systems. The proposed module is gen-
erally applied to the recent monocular 3D object detectors,
such as MonoGRNet [17], SMOKE [10], MonoDLE [11],
and MonoFLEX [23]. Without any further training, the pro-
posed method provides about 6-to-10 times improved AP3D
compared with state-of-the-art methods.
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