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Abstract

Depth-aware Video Panoptic Segmentation (DVPS) is one
of the complicated multi-task learning problems that jointly
tackles video panoptic segmentation and depth estimation
in a single model. Existing works are typically composed of
task-specialized heads, including respective segmentation
heads for things and stuff, global and instance depth map
heads, and a tracking head, and are trained with consecutive
video frames. Increasing the complexity of modules, losses,
and data batch may lead to sensitive performance against
training or hyper-parameter configurations. In this work, we
attempt to seek for minimal architecture and configurations
for the DVPS task. Motivated by the past success of the per-
frame semantic segmentation methods in the video semantic
segmentation field, we propose MinDVPS, a simple and min-
imal model that does not require any temporal annotations
during training and the tracking module. Instead of using
extra tracking modules, our model utilizes the learnable em-
beddings, i.e., queries, to track the objects frame-by-frame in
online fashion. We also demonstrate the effectiveness of our
design choice by achieving the state-of-the-art performances
on Cityscapes-DVPS.

1. Introduction

As humans can recognize and process multiple informa-
tion at once, building a model for multi-task learning is
essential in computer vision. While the single-task models,
e.g. [6, 9, 15, 20], are diverged into their own domains, the
multi-task models, e.g. [19, 22], explore broader perspec-
tives and exploit mutual information from different tasks. In
particular, in autonomous driving scenarios, the multi-task
ability is indispensable to facilitate a holistic scene under-
standing, e.g., detecting, segmenting, tracking objects, and
computing the distance of the objects from the camera; i.e.,
Depth-aware Video Panoptic Segmentation (DVPS).

DVPS tackles both video panoptic segmentation and

Figure 1. Depth-aware Video Panoptic Segmentation. (a) Input
image samples. (b) Panoptic segmentation results with semantic
classes and instance ID and (c) monocular depth estimation results
obtained by our method. Despite training over independent images
not consecutive video frames, our MinDVPS predicts both panoptic
segmentation and monocular depth maps in a temporally consistent
manner over consecutive frames during inference.

depth estimation, mostly in driving scenes, as shown in Fig. 1.
DVPS aims to assign a class, ID, and depth value to each
pixel consistently along the consecutive video frames. DVPS
is inherently challenging due to its multi-task learning form,
where it requires to satisfy independent criteria of each task
that might conflict with each other, e.g., to accurately seg-
ment objects, precisely estimate depth, and correctly track
objects. It should also consider temporal consistency across
the frames.

Recent works [14, 23] have been conducted to resolve
these challenges by adopting module-wise architecture and
adding extra tracking modules to deal with consecutive in-
put frames. Particularly, PolyphonicFormer [23] utilizes an
additional tracking loss to train the extra tracking modules.
It introduces careful loss balancing and a recipe for training



dataset sequence during training; otherwise, it might fail to
exploit mutual information and disturb finding the optimal
point of multi-task. Moreover, adopting additional tracking
modules causes extra computational costs, which may limit
the applicability.

In this work, we propose MinDVPS, a minimal model
for depth-aware video panoptic segmentation. Our work is
motivated by MinVIS [8], where they argue video-based
architecture and training are not required for video instance
segmentation performances. They show that only training on
the per-frame instance segmentation task can surpass video-
based architectures. We apply the same finding to DVPS,
propose an end-to-end per-frame based learning architecture
for DVPS, and see whether the same observation holds. With-
out adopting extra tracking modules, our model is trained
with frame-level annotations just as an image-based net-
work, i.e., per-frame learning. Our model tracks the objects
across the frame by linking the learnable embeddings, i.e.
queries. We conduct experiments with our model, MinD-
VPS, on Cityscapes-DVPS [14] to see the effectiveness of
our design choice, and achieve the state-of-the-art perfor-
mance. Thereby, we show that the same observation with
MinVIS [8] is indeed shared even in our DVPS setup which
is more complex than their task.

2. Related Work

Per-frame learning for video segmentation. Recent video
segmentation techniques can be categorized into two video
processing approaches: per-clip and per-frame. The per-clip
based works [3, 11, 16, 18] involve directly processing the
entire spatial-temporal volume of a video to predict spatial-
temporal masks for each object instance. Although these
per-clip methods have led to significant improvements in
video segmentation, they require substantial memory and
computational resources to deal with longer video clips.

On the other hand, the per-frame based works [8, 17, 20,
21] segment object instances for each frame and then tempo-
rally match them using post-processing steps, often accom-
panied by heuristics like tracking modules. Woo et al. [17]
process video frames at inference time with a per-frame
model by training with two different levels of temporal cor-
respondence objective, i.e., segment and pixel. MinVIS [8]
does not have any temporal cues when training the image
instance segmentation model and matches corresponding
queries of each frame during inference without the need for
manually designed tracking modules. They achieve compa-
rable or even outperforming results without requiring anno-
tations for all frames in a video. Given these advantages, we
adopt the per-frame approach of MinVIS and extend it to the
multi-task model for predicting both panoptic segmentation
and monocular depth estimation.

Depth-aware video panoptic segmentation. Many re-

cent approaches have been studied for joint learning of
video panoptic segmentation and depth estimation. ViP-
DeepLab [14] introduces the DVPS task and releases the
datasets by adding depth annotations to Cityscapes-VPS [9]
and SemanticKITTI [1]. MonoDVPS [13] suggests a method
for self-supervised monocular depth estimation in DVPS and
introduce segmentation-guided depth loss to improve depth
prediction. PolyphonicFormer [23] unifies video panoptic
segmentation and depth estimation tasks using a vision trans-
former and query-based learning. They demonstrate the ef-
fectiveness of DETR [2]-like architecture in DVPS, exhibit-
ing remarkable performance. We also adopt query-based
transformer architecture while we do not need any track-
ing module and temporal annotations in training, which is
simpler and more effective.

3. Method
3.1. Overview

Our model takes a single frame as an input and outputs
both the segmented map and the estimated depth map. Given
the input image I ∈ RH×W , our model aims to predict a
set of N segments as set Yi = {(mi, pi(c), di)}Ni=1, where
mi ∈ [0, 1]H×W denotes the mask of the segment i, pi(c)
denotes the probability of the segment assigned to the class
category c ∈ {1, . . . ,K + 1} and di ∈ [0, dmax]

H×W de-
notes the depth map of the segment. The K + 1 class cate-
gories contain a “no-object” category (∅) for the segment
not corresponding to any region and K ground-truth classes.
We set N = 100 to be large enough to cover all the things
and stuff instances appearing in the frame (N ≫ K).

3.2. Per-frame learning of MinDVPS

Our model does not require any temporal annotations
while training. Instead of adopting extra tracking modules to
handle the temporal cues, we only use frame-level cues to
guide the model to learn the representations of the objects in
the frame. If the model is well-trained enough to distinguish
the representations in the frame and to be consistent across
the adjacent frames, we can use these representations for
object tracking [8].

Motivated by DETR [2], we utilize the queries to learn
the object representations. Each branch takes the initial N
queries respectively and encodes the task-specific informa-
tion into the queries. For the panoptic segmentation, each
query learns the class and the mask information of each
object. We use bipartite matching to assign N predictions
to the ground-truth instances with the matching cost as in
previous work [8]. After matching, we use two loss terms
for the segmentation branch as

Lseg = λclsLcls + λmaskLmask. (1)

We use cross-entropy loss for Lcls, and the summation of the



Figure 2. Overall architecture. Given input frame, our image encoder extracts the multi-scale image features from the input. Then the
feature and task-speific queries passed into the segmentation/depth decoder. In the decoder, the queries are updated and decoded into final
panoptic segmentation map and depth map, respectively.

binary cross-entropy loss and the dice loss [12] for Lmask.
For the depth estimation, each query learns the relative depth
of each instance. We apply the same matching results from
the segmentation to the depth estimation so that depth queries
have the same correspondence as the segmentation queries.
The depth loss is composed of scale-invariant logarithmic
loss [4], absolute relative loss, and square relative loss [5] as

Ldepth = λsiLsi + λabsLabs + λsqLsq. (2)

The total loss is composed of the segmentation and the depth
losses as

Ltotal = λsegLseg + λdepthLdepth. (3)

Here, {λ∗} denotes the weight parameters for each loss term.

3.3. Architecture

MinDVPS is a minimal query-based transformer architec-
ture for depth-aware video panoptic segmentation. The over-
all architecture is described in Fig. 2. Our model contains
three main modules: image encoder, panoptic segmentation
decoder, and depth estimation decoder.
Image encoder. We extract image features from the input
image frame by the image encoder. To deal with various
scales of the instances, the encoder outputs multi-scale fea-
tures F = [F0, F1, F2, F−1] using a backbone and a pixel
decoder following [3, 8]. We use ResNet-50 [7] backbone

and multi-scale deformable attention Transformer [24] as
the pixel decoder. We expect the shared encoder to learn and
exploit mutual information of both segmentation and depth
branches.

Panoptic segmentation decoder. We guide the query to
learn the attributes, e.g., appearance or location, of the
objects in the panoptic segmentation decoder. The initial
queries Qseg ∈ RN×C and the image features F from the
encoder are taken as input of the decoder. Note that the de-
coder is composed of three layers and each scale of feature
except for F−1 is taken to each decoder layer. The queries are
updated by computing cross-/self-attention with the given
features at each layer. We do not intentionally split stuff
queries from N queries so that each query will naturally
indicate stuff of things instance by our training scheme.

Then the queries are passed to the two independent pre-
diction heads: the classification head and the mask head.
The queries are decoded into the class prediction p(c) ∈
RN×(K+1) and the mask embeddings Em by each head.
For each instance i, the instance mask is computed by dot-
product between the mask embeddings and the last image
feature as mi(h,w) = σ([Em

i ]⊤F−1(h,w)), where σ(·) is
the sigmoid function. We match the queries with the ground-
truth instances using bipartite matching with the matching
cost following [8]. At inference time, we merge all the in-
stance masks into a single panoptic segmentation map as
m =

∑K
i=1 mi.



Depth estimation decoder. We adopt the depth decoder
similar to the panoptic segmentation decoder. In the depth
estimation decoder, the depth queries Qdepth ∈ R(N+1)×C

are updated with the image features. Note that we utilize an
additional query, i.e., global depth query, to predict whole
depth values of all pixels. Since the depth queries exploit
same bipartite matching results from the segmentation de-
coder, only K depth queries are mapped to the ground-truth
depth instances. Therefore, non-object regions, e.g., gaps
between objects with negligible confidence scores or unseen
class objects, could not be handled with K matched depth
queries and have undefined depth values. We thus add an-
other query to N depth queries to fill in the values and make
dense depth prediction.

After updated by the transformer decoder, the depth
queries are decoded into the depth embeddings Ed by the
depth prediction head D. Each instance depth map is com-
puted by dot-product between the depth embeddings and
the image feature as di(h,w) = σ([Ed

i ]
⊤F−1(h,w)). The

final prediction d is obtained by merging the instance depth
maps di and the global depth map dg with corresponding
ground-truth instance mask mgt,i ∈ {0, 1}H×W as

D = (1−mgt)⊙ dg +
∑K

i=1
mgt,i ⊙ di, (4)

where mgt =
∑K

i=1 mgt,i, mgt ∈ {0, 1}H×W refers to a
single binary mask after merging the instance masks and
hence (1−mgt)⊙ dg term denotes the non-object regions
to fill in the depth with predicted global depth map.

3.4. Object tracking at inference

After training the model, our model performs object track-
ing in a frame-by-frame manner. For example, if the model
feed-forwards frame t and frame t + 1 independently, the
queries from each frame are utilized as a tool for linking
frames. We associate the instances by bipartite matching
between segmentation queries Qseg for frame t and queries
for frame t+ 1. We compute the cosine similarity of queries
for the matching cost. This tracking by query matching is
effective for well-performed shown in Fig. 3.

4. Experiments
4.1. Experiment Setup

Datasets. The Cityscapes-DVPS dataset [14] we employ is
an extension of the Cityscapes-VPS dataset [10]. It enhances
the dataset by introducing additional depth annotations, de-
rived from the stereo disparity maps provided in the original
Cityscapes dataset. Within the Cityscapes-DVPS dataset,
there are 19 semantic classes, consisting of 8 ‘thing’ classes
and 11 ‘stuff’ classes. The dataset comprises a total of 3,000
annotated frames. Specifically, the training, validation, and
test sets contain 2,400, 300, and 300 frames, respectively.

Note that we exclude 2 frames with problematic depth maps
from the training data.

Evaluation metrics. In accordance with the established
evaluation protocol, the evaluation results are analyzed by
using the Depth-aware Video Panoptic Quality (DVPQ)
metric following ViP-Deeplab [14]. This metric gauges
the quality of video panoptic segmentation by focusing
on pixels where the absolute relative depth error remains
below a predetermined threshold value. To be more
specific, we use the symbols P and Q to represent the
prediction and ground-truth, respectively. We also let k
be the window size, and λ be the depth threshold. We
denote P c

i , P id
i , and P d

i as the predictions of example
i for the semantic class, instance ID, and depth. These
notations are also applied to the corresponding ground-
truth; Qc

i , Qid
i , and Qd

i . Then, we can define DVPQk
λ

as: PQ

([
∥t+k−1
i=t (P̂ c

i , P
id
i ), ∥t+k−1

i=t

(
Qc

i , Q
id
i

)]T−k+1

t=1

)
.

∥t+k−1
i=t (·, ·) represents the concatenation of the pair of

elements horizontally, specifically from t to t + k − 1.
As mentioned above, we exclude pixels that exceed the
threshold value of absolute relative depth error. We measure
four values of window size k ∈ {1, 2, 3, 4} and three values
of threshold λ ∈ {0.1, 0.25, 0.5} for Cityscapes-DVPS
dataset following [14].

4.2. Results

Quantitative results. We compare our model with the com-
peting method [23] on Cityscapes-DVPS [14] dataset in
Table 1. Using the same ResNet-50 backbone [7], our model
outperforms PolyphonicFormer on DVPQ and DVPQ-Stuff
by 2.8%p and 5.0%p, respectively. Our method still achieves
comparable results in DVPQ-thing. We postulate that per-
frame learning is effective for depth-aware video panoptic
segmentation. As k denotes the number of frames, the perfor-
mance gaps across k frames imply the temporal consistency
of successive frames. Without any temporal cues in train-
ing, our model achieves smaller performance drop between
DVPQk=1 and DVPQk=4 than the compared method.

Qualitative results. We visualize the predictions of panop-
tic segmentation and depth estimation on two samples of
consecutive frames in Cityscapes-DVPS datasets. As shown
in Fig. 3, MinDVPS simultaneously predicts temporally con-
sistent panoptic segmentation and depth estimation results
without any temporal losses at training time and tracking
modules at inference time. Our method also consistently
tracks occluded instances in a video (e.g., a car behind the
other car and the person behind the pole), since the tracking
is performed only via bipartite matching between N × C
instance query embeddings, which do not have spatial ex-
tents [8].



Method k = 1 k = 2 k = 3 k = 4 DVPQk
λ Average

MinDVPS (ours) λ = 0.50 64.6 53.1 73.1 58.7 42.6 70.3 55.5 37.2 68.9 53.6 33.4 68.3 58.1 41.6 70.1
MinDVPS (ours) λ = 0.25 61.5 50.5 69.6 55.3 39.4 66.9 53.0 36.0 65.4 51.0 32.4 64.5 55.2 39.6 66.6
MinDVPS (ours) λ = 0.10 44.1 33.7 51.7 39.5 25.7 49.6 37.8 22.3 49.0 36.2 19.8 48.2 39.4 25.4 49.6

MinDVPS (ours) Avg. 56.8 45.8 64.8 51.2 35.9 62.3 48.8 31.9 61.0 46.9 28.6 60.3 50.9 35.5 62.1

PolyphonicFormer [23] Avg. 54.4 47.0 59.8 48.1 35.9 57.0 45.5 30.9 56.2 44.1 28.6 55.4 48.1 35.6 57.1

Table 1. Quantitative results on Cityscapes-DVPS Each cell shows | DVPQk
λ DVPQk

λ-Thing DVPQk
λ-Stuff | where λ is the threshold

of the relative depth error and k is the number of frames. Smaller λ and larger k requires the higher accuracy. Avg. denotes the averaged
performances over the depth errors.

Frame�t+1 Frame�tFrame�t Frame�t+1

Figure 3. Qualitative results on Cityscapes-DVPS. We visualize the panoptic segmentation and depth prediction results of our model for
two examples of consecutive image frames. The instances with the same color over two consecutive frames in the panoptic segmentation
map denote that they have same instance ID. The brighter color in the depth map correspond to the higher value of depth. Note that we
post-process the depth regions predicted as “sky” stuff by panoptic segmentation to have max depth value.

5. Conclusion

We present MinDVPS, a minimal model for depth-aware
video panoptic segmentation. Without any video annotations,
our model is trained with frame-level annotations just as
image-based network. Instead of adding extra tracking mod-
ules, we process online tracking by well-learned queries and
matching them frame-by-frame manner. MinDVPS outper-
forms previous work and shows temporally consistent per-
formances across frames. This effective and efficient model
for DVPS is helpful for autonomous driving system and also
sports video assistant referee system where needs robust
segmenting and tracking performances.
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