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Abstract

Depth estimation from monocular images plays an im-
portant role in real-world visual perception systems. How-
ever, learning-based depth estimation models are trained
and tested on clean data while ignoring out-of-distribution
(OoD) situations. Common corruptions tend to happen in
practical scenarios, especially for safety-critical applica-
tions like autonomous driving and robot navigation. To
fill in this gap, we present a comprehensive robustness test
suite dubbed RoboDepth. It consists of 18 corruptions from
three categories: 1) weather and lighting conditions; 2)
sensor failure and movement; and 3) data processing is-
sues. Then, we conduct a comprehensive benchmark on
42 existing depth estimation models from indoor and out-
door scenes, to evaluate their robustness under corruptions.
Our benchmark results indicate that, although promising
results have been achieved, state-of-the-art depth estima-
tion models are at risk of being vulnerable to corruptions.
We further make in-depth discussions on the design consid-
erations of building more robust depth estimation models,
from aspects including pre-training, augmentation, modal-
ity, and learning paradigm. We hope our benchmark can
lay a solid foundation for robust OoD depth estimation.
The benchmark suite and toolkit are publicly available at
https://github.com/ldkong1205/RoboDepth.

1. Introduction
Monocular depth estimation (MDE) is the task of pre-

dicting the depth of a scene using only a single image, typ-
ically captured using cameras equipped on drones, mobile
robots, and vehicles [9, 21, 30, 49]. Accurate MDE is cru-
cial for a wide range of applications, such as autonomous
driving, augmented reality, and robot navigation. With the
advent of recent learning-based paradigms, various MDE
algorithms have been proposed and achieved promising per-
formance on standard benchmark datasets [8, 12, 35, 37].

Figure 1. The depth estimation robustness (in terms of depth esti-
mation error (DEE) defined in Sec. 3) under 18 corruptions in radar
charts. Different MDE models exhibit diverse strengths and weak-
nesses against different corruptions that occur in the real world.

However, existing MDE models face significant chal-
lenges in terms of out-of-distribution (OoD) robustness un-
der real-world corruptions, such as adverse weather [16]
and sensor failure [20]. In particular, the existing learning-
based visual perception models are highly sensitive to vari-
ations in lighting, noise, texture shift, and other factors
that can distort the image and lead to inaccurate predic-
tions [15, 19]. Furthermore, these models can struggle with
the generalization of new scenes and objects that they have
not encountered during training [29].

https://github.com/ldkong1205/RoboDepth


Figure 2. Corruption taxonomy. We break down common corruptions into three categories: 1) Weather and lighting conditions, such as
sunny, low-light, fog, frost, snow, and contrast. 2) Sensor failure and movement, such as potential blurs (defocus, glass, motion, zoom)
caused by motion. 3) Data processing issues, such as noises (Gaussian, impulse, ISO) happen due to hardware malfunctions.

As one of the basic visual perception tasks, models for
MDE also likely learn the systematic errors in depth es-
timations; corruptions and perturbations such as lighting
changes, motion blur, shadows, data compression, etc., are
present in real images and rarely dealt adequately in current
MDE systems [4, 24]. Despite the promising results con-
stantly achieved on the relatively “clean” datasets [8,12,35],
the absence of a suitable robustness benchmark hinders the
further development of resilient and scalable MDE systems.

In this work, we make the first step towards robust MDE
by establishing the KITTI-C, NYUDepth2-C, and KITTI-S
benchmarks. Different from existing works on either merg-
ing multiple datasets for cross-domain MDE [26, 33, 46] or
designing adversarial patches to attack MDE models [4, 7],
our benchmarks aim at simulating common corruptions that
have a high likelihood to occur in real-world environments.
As shown in Fig. 2, we design 18 corruption types from
three main categories: weather and lighting conditions, sen-
sor failure and movement, and data processing issues. Each
of these corruptions, which is further divided into five sever-
ity levels, mimics the wide range of scenarios that would
cause distortions, texture shift, and/or degraded, lossy, and
contaminated images [15, 29].

Since MDE models rely upon sufficient and clear visual
cues to infer accurate depth, the aforementioned corruptions
tend to cause difficulties in depth predictions. A pilot study
shown in Fig. 1 reveals that MDE models with unique ar-
chitectures exhibit diverse behaviors under different corrup-
tions. It is thus important to understand the root causes of
performance degradation for each model so that we can de-
sign and build a robust and reliable MDE model. To achieve
this goal, we benchmark intensively prior MDE methods
based on our proposed datasets and conduct a comprehen-
sive study on their robustness against corruptions. Based
on our benchmarking results, we draw several interesting
observations: 1) We find that existing MDE models, either
from indoor scenes or outdoor scenes, are at the risk of be-
ing vulnerable to corruptions. 2) Models with monocular

inputs are more stable than those trained with stereo pairs.
3) Transferring knowledge from other related tasks helps
MDE models preserve robustness. 4) Training with high-
resolution images yields more robust models against noise
perturbations. 5) The supervised and self-supervised MDE
models have different sensitivities to corruptions. We will
revisit these findings more formally in the following sec-
tions.

To sum up, this work has these key contributions:

• We introduce RoboDepth, the first systematically-
designed robustness evaluation suite for monocular
depth estimation under corruptions.

• We benchmark 42 models from indoor and outdoor
scenes, on their robustness against corruptions.

• Based on our observations, we draw in-depth discus-
sions on the design considerations of building more
robust MDE models for practical applications.

2. Related Work
Monocular Depth Estimation (MDE). Since the pioneer-
ing works [10, 11, 13, 52] first adopts deep neural net-
works to perform monocular depth estimation, significant
progress has been made in many aspects, as shown in
Tab. 1. Notable innovations include network architectures
[22, 32, 47, 50], optimization functions [6, 14, 48], internal
constraints [44,51], multi-task learning [18], geometry con-
straint [40], and various sources of supervisions [26,33,36].
Based on the learning paradigm, most MDE methods can
be split into supervised or self-supervised models. The for-
mer mainly focuses on indoor scenes and uses ground truth
from RGB-D cameras or LiDAR sensors to train a regres-
sion model [1, 25]; while the latter formulates MDE as a
novel view synthesis task to minimize the photometric loss
between stereo pairs or from monocular video frames [52].
Although promising results have been achieved, the robust-
ness of MDE models under adverse scenarios is still un-
known. Due to the lack of relevant datasets, existing models



are at risk of being vulnerable to corruptions. In this work,
we fill in this gap by establishing comprehensive evaluation
benchmarks and testing 42 MDE models from both indoor
and outdoor environments to analyze their robustness.
Robust MDE. To the best of our knowledge, only a few
works targeted robust learning of MDE and they focused
on different aspects. Ranftl et al. [33] proposed a uni-
fied objective for merging multiple datasets with different
depth scales and ranges for training robust models. Sim-
ilar works [5, 26, 38, 42, 46] resort to web stereo data or
3D movies to train MDE models and adapt them to unseen
datasets. Kopf et al. [20] estimate stable camera trajecto-
ries for hand-held cellphone videos. SC-DepthV3 [36] gen-
erates pseudo-depth to refine depth details for scenes with
dynamic objects. Li et al. [23] proposed an attention mod-
ule to choose scene-specific features for MDE on both in-
door and outdoor scenes. SeasonDepth [16] contributed a
dataset with depth maps under sunny, cloudy, and foliage
weather. Most recently, there are works [4, 7] design adver-
sarial patches to attack MDE models. Conversely, we aim
to test the robustness of MDEs to corruptions that occur in
the real-world environment. We establish the first bench-
mark of this kind and incorporate an ample number of MDE
models for analysis and comparison.
Corruption Robustness. ImageNet-C [15] is the pioneer-
ing work in this line of research which benchmarks clas-
sical image classification models to common corruptions
and perturbations. Follow-up studies extend on the aspect
to other visual perception tasks, e.g., object detection [29],
image segmentation [19], navigation [3], video classifica-
tion [45], and pose estimation [39]. The essentiality of
evaluating model robustness has been repeatedly validated.
Since we are targeting a different task, i.e., MDE, most of
the well-studied corruption types become realistic or suit-
able for such a data format. This motivates us to explore
new taxonomy for defining more proper corruption types
for MDE.

3. RoboDepth Benchmark
In this section, we first introduce the taxonomy of cor-

ruptions included in our benchmarks (Sec. 3.1). We then
elaborate on more details of the proposed datasets (Sec. 3.2)
and corresponding robustness evaluation metrics (Sec. 3.3).

3.1. Corruption Type

Weather & Lighting Condition. The cameras on drones
or vehicles operating under different weather and times of
day capture distribution-shifted images which are rare or
lacking in current MDE datasets. To probe the robustness
of MDE models under these adverse weather and light-
ing conditions, we simulate six corruptions, i.e., ‘bright’,
‘dark’, ‘fog’, ‘frost’, ‘snow’, and ‘contrast’, which com-
monly occur in the real-world environment. Compared to

(a) KITTI-C (b) NYUDepth2-C

Figure 3. Benchmarking results of 42 monocular depth estimation
models on KITTI-C and NYUDepth2-C. Figures from top to bot-
tom: the depth estimation error (DEE) vs. [first row] mean corrup-
tion error (mCE), [second row] mean resilience rate (mRR), and
[third row] sensitivity analysis among different corruption types.

clean images, these corruptions tend to affect the intensity
and color of the light source, leading to hazy, blurry, and
noise-contaminated images, which increase the difficulties
for MDE models to make accurate depth predictions.
Sensor Failure & Movement. An MDE system must be-
have robustly against motion perturbation and sensor failure
to maintain safety requirements for practical applications.
To achieve this goal, we mimic four motion-related corrup-
tions, i.e., ‘defocus’, ‘glass’, ‘motion’, and ‘zoom’ blurs;
we also generate images under ‘elastic transformation’ and
‘color quantization’, which happen during sensor malfunc-
tion. These corruption types are often associated with issues
including edge distortion, contrast loss, and pattern shift.
Data & Processing. Data collection and transmission are
inevitably associated with various sources of noise and po-
tential loss of information. We include four such ran-
dom variations, i.e., ‘gaussian’, ‘impulse’, ‘shot’, and ‘ISO’
noises. In addition, we investigate the degradation caused
by ‘pixelate’ and ‘JPEG compression’ which are common
corruptions in handling image data. Compared to clean im-
ages, the noise-contaminated data introduce errors in the
intensity values of pixels, leading to a grainy or speckled
appearance. The pixelation and lossy compression tend to
lead to a loss of detail and clarity in the image and can result
in visible artifacts, such as blockiness or blurring.



Table 1. Depth estimation model calibration from different aspects (modality, backbone, pertaining strategy, and loss function).

Model Venue Modality Motivation Backbone Pretrain Loss Function

MonoDepth2 [14] ICCV’19 Mono & Stereo Auto-masking & multi-scale cues ResNet-18/50 ImageNet photometric re-projection; per-pixel smoothness
DepthHints [41] ICCV’19 Stereo Complementary depth suggestions ResNet-18 ImageNet photometric re-projection; per-pixel smoothness

SC-Depth [2] NeurIPS’19 Mono Geometry consistency constraint ResNet-50 CityScapes consistency; photometric re-projection; smoothness
CADepth [44] 3DV’21 Mono & Stereo Channel-wise structural attention ResNet-50 ImageNet photometric re-projection; per-pixel smoothness

HR-Depth [28] AAAI’21 Mono High-resolution features fusion ResNet-18 Cityscapes photometric re-projection; per-pixel smoothness
DIFFNet [51] BMVC’21 Mono Internel feature fusion mechanism HRNet ImageNet photometric re-projection; per-pixel smoothness

ManyDepth [40] CVPR’21 Multi-Mono Sequential test-time information ResNet-18 ImageNet consistency; photometric re-projection; smoothness
FSRE-Depth [18] ICCV’21 Mono Semantics-guided triplet loss ResNet-18 ImageNet semantic triplet; photometric re-projection; smoothness

MonoViT [50] 3DV’21 Mono Global reasoning via self-attention MPViT ImageNet photometric re-projection; per-pixel smoothness
DynaDepth [48] ECCV’22 Mono Vision and IMU motion dynamics ResNet-18/50 ImageNet IMU photometric; cross-sensor photometric consistency

TriDepth [6] WACV’23 Multi-Mono Patch-based triplet optimizing strategy ResNet-18 ImageNet patch triplet; photometric re-projection; smoothness
Lite-Mono [47] CVPR’23 Mono Efficient mix of CNNs & attentions ResNet-18 ImageNet photometric re-projection; per-pixel smoothness

3.2. Robustness Benchmark

KITTI-C. Based on the KITTI Vision Suite [12], we estab-
lish a robustness benchmark for outdoor MDE. We simulate
the defined 18 corruptions using data from the KITTI val set
under Eigen’s split. Similar to [15], we design five severity
levels for each corruption to further consolidate the eval-
uation of robustness changes. As a result, this robustness
probing dataset has a total number of 62, 730 RGB images
with a size of 192×640. We also include the high-resolution
version (320×1024) for evaluating the robustness of models
with larger images as the input.
NYUDepth2-C. We construct a benchmark for robust in-
door MDE based on NYU Depth V2 [35]. 15 of the defined
corruptions are used, excluding ‘fog’, ‘frost’, and ‘snow’
which rarely occur in the indoor scenes. Since the indoor
environments are less variant than outdoor ones, we only
include four severity levels for each corruption. To sum
up, this dataset contains 39, 240 images of size 480 × 640,
which cover 23 different types of indoor scenes.
KITTI-S. To further investigate the root cause of robust-
ness degradation, we form another robustness set based on
KITTI [12], which is stylized via the style transfer model
AdaIn [17]. This dataset has 8, 364 images from 12 styles,
including ‘cartoon’, ‘digital art’, ‘ink painting’, ‘kids’ draw-
ing’, ‘murals’, ‘oil painting’, ‘penciling’, ‘shadow play’,
‘sketch’, ‘stained glass’, ‘relief’, and ‘water color’.

3.3. Evaluation Metrics

Depth Estimation Error (DEE). We combine Abs Rel and
δ1, the two main measures defined in [10,27], into a unified
metric as DEE = Abs Rel−δ1+1

2 , which is constantly used as
the indicator of depth estimation error in our benchmark.
Corruption Error (CE). We follow [15] and use the mean
CE (mCE) as the primary metric in comparing models’ ro-
bustness. To normalize the severity effects, we choose Mon-
oDepth2 [14] and AdaBins [1] as the baseline models for
the KITTI-C and NYUDepth2-C benchmarks, respectively.
The CE and mCE scores are calculated as follows:

CEi =

∑5
l=1(DEEi,l)∑5

l=1(DEEbaseline
i,l )

, mCE =
1

N

N∑
i=1

CEi . (1)

Figure 4. Depth estimation robustness comparisons among differ-
ent modalities (Mono, Stereo, and Mono+Stereo).

Figure 5. Depth estimation robustness of MonoDepth2 [14] under
different training configurations. [1st row] Different pretrain tech-
niques. [2nd row] Different input resolutions.

Resilience Rate (RR). We define mean RR (mRR) as the
relative robustness indicator for measuring how much accu-
racy can a model retain when evaluated on the corruption
sets. The RR and mRR scores are calculated as follows.

RRi =

∑5
l=1(1− DEEi,l)

5× (1− DEEclean)
, mRR =

1

N

N∑
i=1

RRi , (2)

where DEEclean denotes the task-specific accuracy score on
the “clean” evaluation set.

4. Experimental Analysis
4.1. Benchmark Configuration

Depth Estimation Model. We benchmark 42 depth esti-
mation models and variants, which cover most of the open-



Table 2. The Corruption Error (CE) of 32 monocular depth estimation models on KITTI-C. All scores are given in percentage (%).
Blocks from top to bottom: [1st] the baseline MonoDepth2 R18 [14]; [2nd] methods w/ monocular inputs; [3rd] methods w/ stereo inputs;
[4th] methods w/ monocular + stereo inputs. Bold: Best in col. Underline: Second best in col. Blue : Best in row. Red : Worst in row.

Method mCE Bright Dark Fog Frost Snow Contr Defoc Glass Motio Zoom Elast Quant Gaus Impul Shot ISO Pixel JPEG

MonoDepth2 R18 [14] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

MonoDepth2 nopt [14] 119.8 140.8 122.5 200.7 112.6 78.1 222.5 104.1 95.9 92.1 103.0 114.7 109.8 114.8 116.2 118.2 116.8 105.5 87.2
MonoDepth2 HR [14] 106.1 99.2 134.3 100.0 97.8 113.9 114.4 161.1 106.2 106.5 115.4 95.4 111.4 84.9 90.5 93.2 88.7 95.2 101.0
MonoDepth2 R50 [14] 113.4 97.7 105.0 100.0 103.6 96.3 124.6 175.0 162.0 128.2 103.5 100.8 102.6 106.5 103.6 108.2 109.5 106.9 107.7

MaskOcc R18 [34] 104.1 100.0 101.8 98.7 102.2 96.3 107.0 130.3 121.9 105.6 100.0 100.0 95.3 105.0 105.4 107.1 107.5 98.6 90.3
DNet R18 [43] 104.7 98.5 94.3 100.7 114.4 98.6 111.8 142.6 132.2 112.0 107.0 101.6 97.9 94.3 94.1 95.9 92.0 100.0 96.9

CADepth [44] 110.1 93.1 107.1 91.6 117.0 103.5 103.2 145.9 143.4 131.9 103.5 93.8 99.5 110.2 111.3 112.7 115.5 99.3 99.5
HR-Depth [28] 103.7 93.1 103.2 97.4 100.7 94.1 113.9 145.9 124.0 121.8 111.4 96.1 96.9 94.5 95.9 98.8 96.4 93.1 89.8

DIFFNet [51] 95.0 85.4 79.3 84.5 71.8 68.9 86.1 210.3 136.4 129.6 98.0 88.4 85.5 76.0 68.4 75.0 69.6 93.1 103.1
ManyDepth R18 [40] 105.4 103.9 97.9 109.0 104.0 93.7 121.4 104.1 115.3 97.7 96.5 103.9 97.9 112.0 115.7 113.8 116.5 101.4 92.9

FSRE-Depth [18] 99.1 98.5 93.2 89.7 85.6 76.9 90.9 119.3 112.8 99.1 92.0 92.3 92.8 104.2 106.4 108.8 104.9 101.4 114.3
MonoViT [50] 79.3 81.5 86.8 74.8 76.9 53.8 63.6 73.8 84.3 75.5 89.1 91.5 75.7 80.7 75.3 79.7 74.7 111.7 78.6

MonoViT HR [50] 75.0 78.5 85.0 73.6 81.2 52.6 62.6 59.4 70.7 67.1 91.5 83.7 75.1 78.7 71.2 76.2 73.5 93.1 75.5
DynaDepth R18 [48] 110.4 98.5 103.2 100.7 104.3 99.6 111.2 205.3 143.4 141.2 103.0 98.5 96.4 98.7 97.4 98.8 97.7 97.2 91.8
DynaDepth R50 [48] 120.0 98.5 106.4 98.1 117.0 107.4 107.5 218.0 187.6 147.2 108.5 96.9 102.1 108.9 112.3 112.4 115.5 105.5 110.2

RA-Depth [31] 112.7 86.9 112.1 81.9 86.3 80.8 88.2 204.5 152.1 175.0 106.5 94.6 92.2 110.2 103.6 118.2 117.3 120.7 98.0
TriDepth R18 [6] 109.3 100.8 107.1 121.3 122.0 97.5 141.7 109.8 124.4 98.2 94.5 97.7 103.1 108.9 112.6 111.8 112.9 97.9 104.6

Lite-Mono Tiny [47] 92.9 97.7 91.8 101.3 81.2 69.3 102.1 105.3 102.5 91.7 92.5 98.5 82.4 93.2 87.9 98.8 92.8 101.4 82.1
Lite-Mono Small [47] 100.3 97.7 89.6 104.5 90.6 84.2 127.3 144.7 116.5 113.9 101.5 99.2 83.4 91.2 86.4 93.8 91.8 106.2 83.7
Lite-Mono Base [47] 93.2 91.5 92.5 92.9 88.5 75.2 94.7 91.8 97.9 102.3 97.5 100.0 90.7 94.0 87.4 98.2 93.6 104.1 84.2

Lite-Mono Large [47] 90.8 84.6 81.1 81.3 92.1 84.7 79.7 91.0 93.0 101.9 95.5 93.8 76.7 94.5 89.5 96.8 93.3 110.3 93.9

MonoDepth2 R18 [14] 117.7 102.3 124.3 103.9 110.1 100.8 125.1 159.8 137.2 122.2 104.0 104.7 103.6 128.1 130.9 136.2 127.1 99.3 99.0
MonoDepth2 nopt [14] 129.0 139.2 150.7 188.4 127.1 85.1 182.9 109.0 95.9 100.5 113.9 120.9 122.3 140.4 145.0 153.2 143.3 113.1 90.8
MonoDepth2 HR [14] 111.5 101.5 101.8 107.7 128.5 103.5 127.3 177.1 128.9 129.2 122.4 100.8 106.7 89.3 88.2 94.7 88.7 103.5 106.6

DepthHints [41] 111.4 95.4 110.7 88.4 115.9 100.8 87.7 143.4 169.4 121.8 97.5 100.8 99.5 114.6 114.9 121.2 117.3 108.3 98.0
DepthHints nopt [41] 141.6 133.1 170.0 194.2 135.0 90.6 210.2 146.3 119.4 111.6 114.9 110.1 128.0 159.6 169.2 176.2 178.4 104.8 97.5
DepthHints HR [41] 112.0 93.9 100.7 91.0 114.4 93.9 96.3 188.1 150.0 148.2 130.4 91.5 94.8 103.4 108.2 111.8 109.3 97.2 93.4

MonoDepth2 R18 [14] 124.3 97.7 144.3 96.8 106.5 104.9 106.4 183.2 143.0 131.0 101.5 99.2 105.2 150.3 155.5 165.0 162.1 93.8 91.3
MonoDepth2 nopt [14] 136.3 148.5 164.3 211.6 152.0 83.8 235.3 93.4 91.3 100.0 114.4 118.6 118.7 148.4 153.2 161.5 156.2 111.0 90.3
MonoDepth2 HR [14] 106.1 99.2 134.3 100.0 97.8 113.9 114.4 161.1 106.2 106.5 115.4 95.4 111.4 84.9 90.5 93.2 88.7 95.2 101.0

CADepth [44] 118.3 94.6 127.5 88.4 112.3 108.8 90.4 138.5 170.3 120.4 96.0 97.7 96.4 142.2 143.7 154.1 150.0 100.0 98.0
MonoViT [50] 75.4 80.0 87.5 78.7 76.9 42.1 70.1 73.4 76.0 74.5 83.6 86.8 76.2 72.1 66.1 71.2 67.0 101.4 73.5

Table 3. The Corruption Error (CE) of 10 monocular depth estimation models on the NYUDepth2-C dataset. All scores are given in
percentage (%). Bold: Best in col. Underline: Second best in col. Blue : Best in row. Red : Worst in row.

Method mCE Bright Dark Contr Defoc Glass Motio Zoom Elast Quant Gaus Impul Shot ISO Pixel JPEG

AdaBins EB5 [1] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BTS R50 [22] 122.8 112.9 138.7 125.0 143.4 127.2 125.5 96.9 119.0 119.2 113.3 136.9 133.3 124.7 112.1 113.6
AdaBins R50 [1] 134.7 135.6 151.0 136.3 144.3 135.9 133.2 101.6 133.3 143.1 117.4 138.8 136.4 126.6 150.0 137.0

DPT ViT-B [32] 83.2 102.3 93.8 84.9 65.5 80.6 84.2 60.4 90.9 109.3 51.3 57.0 65.0 52.4 137.9 113.0
SimIPU nopt [24] 200.2 293.9 220.1 211.3 177.0 194.7 217.4 112.8 249.0 258.9 119.2 125.9 153.1 121.3 302.4 245.5

SimIPU ImageNet [24] 163.1 203.8 190.7 177.4 160.4 163.6 176.1 109.9 200.0 191.4 114.1 123.8 140.8 118.2 199.2 176.6
SimIPU KITTI [24] 173.8 247.0 192.3 191.5 153.2 161.7 182.1 100.5 206.5 220.5 110.8 118.2 143.5 116.6 253.2 209.1

SimIPU WaymoOpen [24] 159.5 203.8 179.4 187.7 161.7 158.7 170.1 105.5 167.3 190.1 112.6 123.3 141.5 119.7 198.4 172.1
DepthFormer SwinT-1k [25] 106.3 111.4 143.8 110.9 93.6 126.2 103.8 78.1 114.4 127.2 75.4 85.8 98.3 80.3 129.8 116.2

DepthFormer SwinT-22k [25] 63.5 75.0 77.3 58.0 54.0 83.5 64.7 61.7 73.2 78.8 40.8 41.7 50.3 41.3 81.5 70.1

source models so far. 32 of them are for outdoor MDE and
the remaining 10 are for indoor MDE.
Evaluation Protocol. To avoid any unfairness in robustness
comparisons, we unify the common configurations among
candidate models, such as backbones and data augmenta-
tions. We use public checkpoints whenever possible and re-
produce the reported results based on official settings. More
details on this aspect are included in the Appendix.

4.2. Benchmark Analysis

Observation 1: MDE Robustness - existing outdoor and
indoor MDE models are at the risk of being vulnerable to
real-world corruptions. We show the robustness of differ-
ent models in terms of mCE, mRR, and corruption sensitiv-
ity in Fig. 3. As can be seen from the first two rows, ex-

isting MDE models, either from indoor or outdoor scenes,
are showing clear relationships between the DEE scores and
robustness metrics. Specifically, higher DEE scores corre-
late to higher mCE scores and are less robust compared to
the baseline models. From Tab. 2 and Tab. 3, we observe
that the Transformers-based MDE models are significantly
more robust compared to conventional CNNs models. This
is also observed for the mRR metrics, which are shown in
Tab. 4 and Tab. 5. The qualitative results shown in Fig. 6
and Fig. 7 further validate that models with long-range re-
ceptive fields, such as MonoViT [50] and Lite-Mono [47],
can better maintain accurate depth predictions under edge
distortion, texture shift, and noise contamination.
Observation 2: Modality - the learning paradigm plays a
vital role in depth estimation robustness. We analyze the ro-



Table 4. The Resilience Rate (RR) of 32 monocular depth estimation models on KITTI-C. All scores are given in percentage (%). Blocks
from top to bottom: [1st] the baseline MonoDepth2 R18 [14]; [2nd] methods w/ monocular inputs; [3rd] methods w/ stereo inputs; [4th]
methods w/ monocular + stereo inputs. Bold: Best in col. Underline: Second best in col. Blue : Best in row. Red : Worst in row.

Method mRR Bright Dark Fog Frost Snow Contr Defoc Glass Motio Zoom Elast Quant Gaus Impul Shot ISO Pixel JPEG

MonoDepth2 R18 [14] 84.5 98.8 81.7 95.9 82.1 55.5 92.3 85.8 86.0 89.0 90.7 98.9 91.6 69.9 69.4 74.9 69.5 97.1 91.3

MonoDepth2 nopt [14] 82.5 95.4 76.8 80.5 80.4 70.2 68.2 87.2 89.7 93.6 92.6 99.5 92.1 65.3 64.0 69.9 63.9 99.0 96.9
MonoDepth2 HR [14] 82.4 98.3 70.4 95.4 82.3 47.2 88.7 68.5 83.9 86.9 86.7 99.0 88.6 76.1 73.1 77.1 74.0 97.3 90.5
MonoDepth2 R50 [14] 80.6 98.9 80.0 95.7 80.8 57.5 86.9 64.9 68.9 81.9 89.7 98.5 90.8 66.9 67.6 71.6 65.1 95.7 89.4

MaskOcc R18 [34] 83.0 98.5 81.0 95.9 81.2 57.5 90.6 77.2 79.8 87.4 90.5 98.6 92.4 67.6 66.8 72.0 66.0 97.1 93.2
DNet R18 [43] 83.3 98.9 83.5 95.7 77.4 56.2 89.7 73.9 77.1 85.9 89.0 98.5 92.0 72.3 71.9 76.4 72.9 96.9 91.8

CADepth [44] 80.1 98.5 78.5 96.2 75.8 52.8 90.5 72.2 73.2 80.2 88.8 98.5 90.6 64.7 63.6 69.2 61.9 96.0 90.3
HR-Depth [28] 82.9 99.0 80.1 95.6 81.2 58.5 88.6 72.5 78.8 83.0 87.4 98.7 91.6 71.7 70.6 74.8 70.5 97.4 92.8

DIFFNet [51] 85.4 99.0 86.6 96.8 89.2 72.2 93.4 54.2 74.6 80.2 89.4 98.7 93.0 78.8 81.7 83.0 81.3 96.3 88.9
ManyDepth [40] 83.1 98.6 82.8 94.8 81.2 59.4 88.1 85.1 82.2 90.0 91.9 98.8 92.5 65.0 62.7 69.9 62.5 97.3 93.3
FSREDepth [18] 83.9 97.9 82.9 96.6 85.6 68.1 93.2 79.6 81.6 88.2 91.5 98.9 92.1 67.3 65.8 70.7 66.6 95.7 87.1

MonoViT [50] 89.2 99.2 84.0 98.1 87.4 80.5 97.8 91.0 88.4 92.9 91.1 97.9 94.8 76.6 78.5 80.9 78.8 93.0 93.9
MonoViT HR [50] 89.7 99.1 84.1 97.8 85.5 80.7 97.5 94.4 91.5 94.4 90.1 98.5 94.4 77.0 79.8 81.8 78.9 95.5 94.0

DynaDepth R18 [48] 81.5 98.8 80.5 95.6 80.5 55.6 89.7 56.5 74.0 78.7 89.8 98.9 92.2 70.3 70.3 75.2 70.3 97.3 92.9
DynaDepth R50 [48] 78.0 98.3 79.1 95.6 76.2 50.9 90.1 52.8 61.6 76.9 88.2 98.7 90.5 65.6 63.5 69.7 62.2 95.5 88.4

RA-Depth [31] 78.8 98.1 75.9 96.6 84.2 64.9 92.4 55.4 69.9 68.8 87.0 97.1 90.9 63.8 66.0 66.2 60.3 91.3 89.4
TriDepth R18 [6] 81.6 98.4 79.3 92.0 75.0 56.9 83.2 82.9 79.2 89.2 91.7 99.0 90.7 65.9 63.7 70.2 63.7 97.2 90.0

Lite-Mono Tiny [47] 86.7 98.6 84.0 95.3 87.6 73.0 91.4 84.0 85.0 90.6 92.0 98.6 95.0 72.5 74.4 75.0 72.3 96.4 94.8
Lite-Mono Small [47] 84.7 98.6 84.6 94.7 84.6 64.4 86.1 73.1 81.1 85.2 89.9 98.5 94.8 73.5 75.0 77.0 72.8 95.6 94.5
Lite-Mono Base [47] 86.0 99.0 83.3 96.2 84.8 69.2 92.5 87.2 85.7 87.5 90.3 97.9 92.7 71.8 74.2 74.8 71.6 95.4 93.8

Lite-Mono Large [47] 85.5 99.1 86.1 97.3 83.0 63.1 94.8 86.6 86.3 86.9 90.0 97.9 94.9 70.9 72.6 74.7 71.1 93.5 90.9

MonoDepth2 R18 [14] 79.1 98.9 74.3 95.7 79.3 55.3 87.3 69.6 76.2 83.9 90.2 98.6 91.2 57.9 56.0 61.2 57.8 97.6 91.9
MonoDepth2 nopt [14] 79.2 96.4 68.0 83.3 76.2 66.5 77.4 86.4 90.4 92.1 90.7 99.3 89.9 54.2 51.3 56.4 52.2 98.4 96.7
MonoDepth2 HR [14] 81.6 98.3 81.0 94.3 72.9 53.3 86.3 64.3 77.9 81.7 85.4 98.5 89.9 74.4 74.4 76.8 74.3 96.3 89.6

DepthHints [41] 80.1 98.8 77.8 97.3 76.6 54.7 94.3 73.3 66.5 83.1 90.6 98.1 91.1 63.1 62.3 66.3 61.4 95.0 91.1
DepthHints nopt [41] 79.5 98.0 80.1 95.9 76.2 58.0 91.5 60.4 71.1 75.9 82.4 98.4 91.2 67.3 64.6 69.2 64.3 95.9 91.2
DepthHints HR [41] 73.2 95.5 60.5 80.7 72.3 62.0 70.1 74.3 82.1 87.6 88.8 99.1 87.0 44.7 39.5 46.3 35.6 97.9 93.4

MonoDepth2 R18 [14] 75.4 98.8 67.4 96.2 79.8 52.5 90.6 62.6 74.0 81.1 90.1 98.6 90.2 47.9 44.7 49.7 42.0 97.7 92.9
MonoDepth2 nopt [14] 76.7 94.5 63.2 78.7 67.8 67.0 65.6 90.4 91.2 91.8 90.2 99.2 90.3 50.4 47.3 52.8 46.1 98.2 96.4
MonoDepth2 HR [14] 82.4 98.3 70.4 95.4 82.3 47.2 88.7 68.5 83.9 86.9 86.7 99.0 88.6 76.1 73.1 77.1 74.0 97.3 90.5

CADepth [44] 76.7 98.5 72.3 97.0 77.4 49.9 93.4 74.4 66.1 83.2 90.7 98.2 91.5 51.0 49.6 53.5 47.0 96.1 90.8
MonoViT [50] 90.4 99.2 83.6 97.2 87.2 86.9 96.2 90.9 90.4 92.9 92.1 98.3 94.5 80.1 82.3 83.9 82.0 94.5 94.8

Table 5. The Resilience Rate (RR) of 10 monocular depth estimation models on the NYUDepth2-C dataset. All scores are given in
percentage (%). Bold: Best in col. Underline: Second best in col. Blue : Best in row. Red : Worst in row.

Method mRR Bright Dark Contr Defoc Glass Motio Zoom Elast Quant Gaus Impul Shot ISO Pixel JPEG

AdaBins EB5 [1] 85.8 97.8 90.8 88.7 86.2 89.4 91.9 69.4 95.4 95.6 68.7 70.5 79.5 69.8 98.7 95.3

BTS R50 [22] 80.6 96.9 83.3 83.7 75.5 84.1 87.6 71.5 93.2 93.4 63.6 55.6 69.3 59.9 98.1 94.0
AdaBins R50 [1] 81.6 97.5 84.0 84.4 78.5 85.5 89.7 72.5 94.5 93.1 64.4 57.1 71.1 61.6 96.7 93.7

DPT ViT-B [32] 95.3 100.0 94.7 94.9 97.9 96.5 97.8 88.9 99.7 96.6 92.6 91.1 93.6 92.7 96.0 95.6
SimIPU nopt [24] 92.5 97.5 91.2 87.9 93.0 95.4 95.5 90.3 98.6 97.0 85.2 84.2 87.6 85.8 99.5 99.0

SimIPU ImageNet [24] 85.0 96.7 83.3 82.5 82.4 87.7 89.4 76.5 91.8 94.1 73.4 71.0 77.5 72.9 99.6 96.3
SimIPU KITTI [24] 91.6 98.0 91.1 86.3 93.0 97.0 96.7 89.2 99.4 97.0 82.6 81.1 84.0 81.0 99.7 98.6

SimIPU WaymoOpen [24] 85.7 96.6 86.1 79.5 81.9 88.9 90.8 78.6 98.3 94.2 74.1 71.2 77.2 72.0 99.6 97.1
DepthFormer SwinT-1k [25] 87.3 97.5 82.4 87.4 89.1 84.6 92.5 80.0 94.3 92.3 80.7 77.6 81.3 79.4 95.9 93.8

DepthFormer SwinT-22k [25] 94.2 98.6 93.0 96.0 95.5 90.6 96.4 83.5 97.2 96.4 92.0 92.3 93.2 92.2 98.4 97.6

bustness of different variants of MonoDepth2 [14] and show
their DEE scores in Fig. 4. We observe that the pure monoc-
ular input is helping the model retain resilience again most
of the corruptions. Using stereo inputs, however, lead to ro-
bustness degradation compared to the monocular and mix
versions. We conjecture that this is mainly because MDE
models trained with stereo pairs rely more on the scene
structural consistency between left and right images, where
such requirements could be destroyed by feeding in cor-
rupted data. Such constraints could be relaxed if the model
is trained on monocular sequences.

Observation 3: Pretraining Strategy - transferring
knowledge from other tasks, such as ImageNet classifica-
tion, brings strengths and weaknesses in the model’s ro-

bustness. The first row in Fig. 5 highlights that MDE mod-
els pretrained on object-centric datasets, e.g., ImageNet, are
more robust against corruptions by weather/lighting condi-
tions (except for ‘snow’) and data processing noises, which
are mostly texture-shifted corruptions. Motion and sensor
corruptions, however, contain more edge and object dis-
tortions and could be eased by models without ImageNet
pretraining. This implies that the CNN-based MDE mod-
els like MonoDepth2 [14] could become more shape-biased
when pretrained on object-centric datasets. More evidence
from the results on the KITTI-S dataset in the Appendix fur-
ther verifies this finding, where the stylized data are causing
less degradation for these MDE models.

Observation 4: Input Resolution - training and testing



Figure 6. Qualitative results of different MDE models under defined corruption types (from severity level 3) in the KITTI-C dataset.

on images with higher resolutions tend to yield more robust
MDE models. From the results shown in the second row
of Fig. 5, we can observe that MDE models trained with
high resolutions will likely yield more robust feature learn-
ing on noise-contaminated corruptions, including Gaussian,
impulse, shot, and ISO noises. Since these noises affect
the global pixel distribution instead of the local one, the
CNN-based MDE models trained with high-resolution im-
ages will be able to capture more fine-grained information
to suppress the degradation caused by noises.

Observation 5: Learning Paradigm - the supervised and
self-supervised learning result in different sensitivities in

model’s robustness. From the third row of Fig. 3 we can
observe that the self-supervised MDE models are less sen-
sitive to lighting changes and motion blurs, compared to the
supervised models. Both models suffer from the noises and
behave robustly against lossy image compressions.

5. Conclusion

In this work, we establish the RoboDepth benchmark
for probing the out-of-distribution robustness of monocu-
lar depth estimation models under corruptions. We intro-
duce three new datasets and two metrics for evaluating the
robustness of both indoor and outdoor MDE models. Our



Figure 7. Qualitative results of five monocular depth estimation models on the KITTI-S dataset, including MonoDepth2 [14], DIFFNet [51],
RA-Depth [31], Lite-Mono [47], and MonoViT [50]. The lighter regions correspond to near distances and vice versa. Best viewed in color.
Zoomed-in for more details.

results reveal the importance of robustness probing among
modern MDE algorithms and summarize the design consid-
erations in terms of architecture, modality, pertaining, reso-
lution, etc. We hope this work could lay a solid foundation
for the development of robust MDE techniques.

Acknowledgements
This research is part of the programme DesCartes and

is supported by the National Research Foundation, Prime
Minister’s Office, Singapore under its Campus for Re-
search Excellence and Technological Enterprise (CREATE)
programme. This work is affiliated with the WP4 of
the DesCartes programme, with an identity number: A-
8000237-00-00.



References
[1] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.

Adabins: Depth estimation using adaptive bins. In
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), pages
4009–4018, 2021. 2, 4, 5, 6

[2] Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan,
Chunhua Shen, Ming-Ming Cheng, and Ian Reid. Unsuper-
vised scale-consistent depth and ego-motion learning from
monocular video. In Adv. Neural Inform. Process. Syst.
(NeurIPS), 2019. 4

[3] Prithvijit Chattopadhyay, Judy Hoffman, Roozbeh Mottaghi,
and Aniruddha Kembhavi. Robustnav: Towards benchmark-
ing robustness in embodied navigation. In IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), pages 15691–15700, 2021. 3

[4] Hemang Chawla, Kishaan Jeeveswaran, Elahe Arani,
and Bahram Zonooz. Image masking for robust self-
supervised monocular depth estimation. arXiv preprint
arXiv:2210.02357, 2022. 2, 3

[5] Weifeng Chen, Shengyi Qian, and Jia Deng. Learning single-
image depth from videos using quality assessment networks.
In IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR),
pages 5604–5613, 2019. 3

[6] Xingyu Chen, Ruonan Zhang, Ji Jiang, Yan Wang, Ge Li,
and Thomas H Li. Self-supervised monocular depth esti-
mation: Solving the edge-fattening problem. In IEEE/CVF
Eur. Conf. Comput. Vis. (ECCV) Conf. Appli. Comput. Vis.
(WACV), pages 5776–5786, 2023. 2, 4, 5, 6

[7] Zhiyuan Cheng, James Liang, Hongjun Choi, Guanhong
Tao, Zhiwen Cao, Dongfang Liu, and Xiangyu Zhang. Phys-
ical attack on monocular depth estimation with optimal ad-
versarial patches. In Eur. Conf. Comput. Vis. (ECCV), pages
514–532, 2022. 2, 3

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), pages
3213–3223, 2016. 1, 2

[9] Xingshuai Dong, Matthew A. Garratt, Sreenatha G. Anavatti,
and Hussein A. Abbass. Towards real-time monocular depth
estimation for robotics: A survey. IEEE Trans. Intell. Trans-
port. Syst. (TITS), 23(10):16940–16961, 2022. 1

[10] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. In Adv. Neural Inform. Process. Syst. (NeurIPS), 2014.
2, 4

[11] Ravi Garg, BG Vijay Kumar, Gustavo Carneiro, and Ian
Reid. Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In Eur. Conf. Comput. Vis. (ECCV),
pages 740–756, 2016. 2

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the kitti vision bench-
mark suite. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.
(CVPR), pages 3354–3361, 2012. 1, 2, 4

[13] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-
tow. Unsupervised monocular depth estimation with left-

right consistency. In IEEE/CVF Conf. Comput. Vis. Pattern
Recog. (CVPR), pages 270–279, 2017. 2

[14] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J. Brostow. Digging into self-supervised monocu-
lar depth prediction. In IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), pages 3828–3838, 2019. 2, 4, 5, 6, 8

[15] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. In Int. Conf. Learn. Represent. (ICLR), 2019. 1, 2, 3,
4

[16] Hanjiang Hu, Baoquan Yang, Zhijian Qiao, Shiqi Liu, Ding
Zhao, and Hesheng Wang. Seasondepth: Cross-season
monocular depth prediction dataset and benchmark under
multiple environments. In Int. Conf. Mach. Learn. Worksh.
(ICMLW), 2022. 1, 3

[17] Xun Huang and Serge Belongie. Arbitrary style trans-
fer in real-time with adaptive instance normalization. In
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pages 1501–
1510, 2017. 4

[18] Hyunyoung Jung, Eunhyeok Park, and Sungjoo Yoo. Fine-
grained semantics-aware representation enhancement for
self-supervised monocular depth estimation. In IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), pages 12642–12652, 2021.
2, 4, 5, 6

[19] Christoph Kamann and Carsten Rother. Benchmarking the
robustness of semantic segmentation models. In IEEE/CVF
Conf. Comput. Vis. Pattern Recog. (CVPR), pages 8828–
8838, 2020. 1, 3

[20] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust
consistent video depth estimation. In IEEE/CVF Conf. Com-
put. Vis. Pattern Recog. (CVPR), pages 1611–1621, 2021. 1,
3

[21] Hamid Laga, Laurent Valentin Jospin, Farid Boussaid, and
Mohammed Bennamoun. A survey on deep learning tech-
niques for stereo-based depth estimation. IEEE Trans. Pat-
tern Anal. Mach. Intell. (PAMI), 44(4):1738–1764, 2020. 1

[22] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and
Il Hong Suh. From big to small: Multi-scale local planar
guidance for monocular depth estimation. arXiv preprint
arXiv:1907.10326, 2019. 2, 5, 6

[23] Ruibo Li, Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu,
and Lingxiao Hang. Deep attention-based classification net-
work for robust depth prediction. In Asian Conf. Comput.
Vis. (ACCV), pages 663–678, 2019. 3

[24] Zhenyu Li, Zehui Chen, Ang Li, Liangji Fang, Qinhong
Jiang, Xianming Liu, Junjun Jiang, Bolei Zhou, and Hang
Zhao. Simipu: Simple 2d image and 3d point cloud unsuper-
vised pre-training for spatial-aware visual representations. In
AAAI Conf. Artifi. Intell. (AAAI), 2022. 2, 5, 6

[25] Zhenyu Li, Zehui Chen, Xianming Liu, and Junjun Jiang.
Depthformer: Exploiting long-range correlation and local in-
formation for accurate monocular depth estimation. arXiv
preprint arXiv:2203.14211, 2022. 2, 5, 6

[26] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In IEEE/CVF
Conf. Comput. Vis. Pattern Recog. (CVPR), pages 2041–
2050, 2018. 2, 3



[27] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid.
Learning depth from single monocular images using deep
convolutional neural fields. IEEE Trans. Pattern Anal. Mach.
Intell. (PAMI), 38(10):2024–2039, 2015. 4

[28] Xiaoyang Lyu, Liang Liu, Mengmeng Wang, Xin Kong, Lina
Liu, Yong Liu, Xinxin Chen, and Yi Yuan. Hr-depth: High
resolution self-supervised monocular depth estimation. In
AAAI Conf. Artifi. Intell. (AAAI), pages 2294–2301, 2021. 4,
5, 6

[29] Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos,
Evgenia Rusak, Oliver Bringmann, Alexander S. Ecker,
Matthias Bethge, and Wieland Brendel. Benchmarking ro-
bustness in object detection: Autonomous driving when win-
ter is coming. arXiv preprint arXiv:1907.07484, 2019. 1, 2,
3

[30] Yue Ming, Xuyang Meng, Chunxiao Fan, and Hui Yu. Deep
learning for monocular depth estimation: A reviews. Neuro-
computing, 438:14–33, 2021. 1

[31] He Mu, Hui Le, Bian Yikai, Ren Jian, Xie Jin, and Yang
Jian. Ra-depth: Resolution adaptive self-supervised monoc-
ular depth estimation. In Eur. Conf. Comput. Vis. (ECCV),
pages 565–581, 2022. 5, 6, 8
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